Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 89: 106141, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36067646

RESUMO

Control over the agglomeration state of manufactured particle systems for drug and oligonucleotide intracellular delivery is paramount to ensure reproducible and scalable therapeutic efficacy. Ultrasonication is a well-established mechanism for the deagglomeration of bulk powders in dispersion. Its use in manufacturing requires strict control of the uniformity and reproducibility of the cavitation field within the sample volume to minimise within-batch and batch-to-batch variability. In this work, we demonstrate the use of a reference cavitating vessel which provides stable and reproducible cavitation fields over litre-scale volumes to assist the controlled deagglomeration of a novel non-viral particle-based plasmid delivery system. The system is the Nuvec delivery platform, comprising polyethylenimine-coated spiky silica particles with diameters of âˆ¼ 200 nm. We evaluated the use of controlled cavitation at different input powers and stages of preparation, for example before and after plasmid loading. Plasmid loading was confirmed by X-ray photoelectron spectroscopy and gel electrophoresis. The latter was also used to assess plasmid integrity and the ability of the particles to protect plasmid from potential degradation caused by the deagglomeration process. We show the utility of laser diffraction and differential centrifugal sedimentation in quantifying the efficacy of product de-agglomeration in the microscale and nanoscale size range respectively. Transmission electron microscopy was used to assess potential damages to the silica particle structure due to the sonication process.


Assuntos
Nanomedicina , Polietilenoimina , DNA , Oligonucleotídeos , Tamanho da Partícula , Polietilenoimina/química , Reprodutibilidade dos Testes , Dióxido de Silício
2.
ACS Omega ; 6(22): 14049-14058, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34124428

RESUMO

Laser diffraction (LD) is a well-established tool for the measurement of particle size distribution. Recently, its demand and use for the measurement of complex biological systems have increased. Among the challenges that these types of samples present, there is the presence of multiple particle populations whose modal size may span across several orders of magnitude. In this study, we assessed the accuracy of LD for the measurement of the modal diameter of both single and mixed populations of polystyrene particles with diameters ranging from 60 nm to 40 µm. We discuss the application of different available algorithms to the analysis of the data and their impact on the measurement results. Independent methods were applied to guide the selection of the algorithms and validate the measured size distributions. We found that the modal diameters of the particle size distribution measured by LD for the mixed suspension was accurate within 2 % for particles larger than 1 µm and generally within 25 % for the particles tested. Method repeatability was found to be robust, with deviations below 1%. The method was also found to be useful for estimating the relative concentration of the particle populations in the mixed samples. This study provides confidence in the use of LD for the measurement of complex multimodal colloidal samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...